ORIGINAL ARTICLE |
|
Year : 2015 | Volume
: 9
| Issue : 1 | Page : 23-30 |
|
Effect of low-level laser therapy on gene expression of vascular endothelial growth factor and interleukin-1 ß in scalpel-induced and laser-induced oral wounds in rats
Inas S.M. Sayed1, Ali Saafan2, Fagr Kh Abdel-Gawad3, Tarek A Harhash2, Mostapha A Abdel-Rahman1
1 Department of Orodental Genetics, National Research Centre, El Buhouth St., Dokki, Giza, Egypt 2 Department of Medical Laser Application, National Institute of Laser Enhanced Sciences, Cairo University, Gamaa St., Giza, Egypt 3 Department of Water Pollution Research, Centre of Excellence for Advanced Science, National Research Centre, El Buhouth St., Dokki, Giza, Egypt
Correspondence Address:
Dr. Tarek A Harhash Department of Medical Laser Application, National Institute of Laser Enhanced Sciences, Cairo University, Gamaa St. 12613, Giza Egypt
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/0976-2868.157595
|
|
Introduction: The effect of low-level laser therapy (LLLT) on wound healing has been evaluated in several studies; however, little is known about the molecular mechanisms that underlies the biostimulatory effect of this treatment modality. Aim: to evaluate the effect of LLLT on gene expression of vascular endothelial growth factor (VEGF) and interleukin-1beta (IL-1 b) during healing of wounds created by surgical blade and by surgical laser in order to have a better image of their interactive role influenced by the laser irradiation. Materials and Methods: 40 male Wister rats were randomly assigned into four groups (A, B, C and D). In groups A and C, an incision was made in the gingival and mucosal tissues using a surgical scalpel. A similar incision was made in groups B and D using 980 nm diode laser. Group A and B were subjected twice to low level 870 nm diode laser 3 h and 24 h after the incision while group C and D served as controls. 30 min after the second irradiation, the rats belonging to all groups were euthanized, and the wound area was excised. Quantitative reverse-transcriptasepolymerase chain reaction was used to measure the gene expression of VEGF and IL-1b. Results and Discussion: LLLT caused an increase in VEGF gene expression in scalpel-induced wounds and a corresponding decrease in laser-induced wounds but without significant differences. LLLT inhibited the gene expression of IL-1b in both types of wounds, but this inhibition was only significant in scalpel wounds. Conclusion: Biostimulatory effect of LLLT could be mediated through modulation of the immune response by the inhibition of IL-1b. |
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|